US009417909B2

a2 United States Patent

Darrington et al.

(10) Patent No.:
(45) Date of Patent:

US 9,417,909 B2
Aug. 16, 2016

(54) SCHEDULING WORK IN A MULTI-NODE (56) References Cited
COMPUTER SYSTEM BASED ON
CHECKPOINT CHARACTERISTICS U.S. PATENT DOCUMENTS
(75) Inventors: David L. Darrington, Rochester, MN %882; 85?23;; ﬁi: ;; %882 i?;h:toaft ale 7?;;‘3/ B
g i%ezgtt&? ([V}I‘S)l\./lgflli‘lliznﬁmes 2009/0043873 Al* 2/2009 Barsness et al. .. 709/223
> > N 2009/0300623 Al* 12/2009 Bansal etal. 718/102
Sanders, Rochester, MN (US); Richard 2010/0011026 Al* 1/2010 Sahaetal 707/200
Michael Shok, Rochester, MN (US)
* cited by examiner
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) Primary Examiner — Tom'Y Chang
(74) Attorney, Agent, or Firm — Martin & Associates, LL.C;
(*) Notice: Subject to any disclaimer, the term of this Bret J. Petersen
patent is extended or adjusted under 35
U.S.C. 154(b) by 2407 days. (57) ABSTRACT
(21) Appl. No.: 12/270,164 Efficient application checkpointing uses checkpointing char-
acteristics of a job to determine how to schedule jobs for
(22) Filed: Nov. 13, 2008 execution on a multi-node computer system. A checkpoint
profile in the job description includes information on the
(65) Prior Publication Data expected frequency and duration of'a check point cycle for the
US 2010/0122256 A1l May 13, 2010 application. The checkpoint profile may be based on a user/
administrator input as well as historical information. The job
(51) Int.ClL scheduler will attempt to group applications (jobs) that have
GOG6F 9/48 (2006.01) the same checkpoint profile, on the same nodes or group of
GOG6F 9/50 (2006.01) nodes. Additionally, the job scheduler may control when new
GO6F 11/14 (2006.01) jobs start based on when the next checkpoint cycle(s) are
(52) US.CL expected. The checkpoint monitor will monitor the check-
CPC v GOG6F 9/485 (2013.01); GOGF 9/4881 point cycles, updating the checkpoint profiles of running jobs.
(2013.01); GO6F 9/5038 (2013.01); GO6F The checkpoint monitor will also keep track of an overall
11/1438 (2013.01) system checkpoint profile to determine the available check-
(58) Field of Classification Search pointing capacity before scheduling jobs on the cluster.

USPC ittt 709/201
See application file for complete search history.

8 Claims, 4 Drawing Sheets

100

'

Service Node Connected Unit
14 (L of 18)
Checkpoint || Resource || Scheduler 10
Monitor || Manager
124 126 128 <>
130 116

CU Gbit

122C
120C
(¢
(o L1 ~a\ e

BCH 1 Network Switch ‘ BCH 2 Network Switch ||eso | BCH 60 Network Switch Server
N I 2 |
A A A A A A A A A Application

137
nEminll=aEnlE o B o ezt 1
— = —_ h=a
[~ =]) [g 8 g g 8

\
130 (9 Places)

137A (9 Places)

U.S. Patent Aug. 16, 2016 Sheet 1 of 4 US 9,417,909 B2

100

Service Node Connected Unit
14 (1 0f 18)
Checkpoint || Resource || Scheduler 110
Monitor | Manager
124 126 128 >
User Interface Disk 112

130

— 116

Top Level
Gbit
Ethernet

CU Gbit

Switch

Ethernet
File File
Server Server
132 132
120A 122C
120C
(2 / LC !
[¥ 1\ ~a\ Filo
BCH 1 Network Switch BCH 2 Network Switch ||eee | BCH 60 Network Switch Server
¢ ¢ A A ¢ A A A A 132
| 4 \ 4 A 4 \ J \ J Y — 135
A A A A A I A A A A Application N_~»
> Checkpoint J37
— — — oad (=] =N
> w o > 2 8 S g a
\
\
130 (9 Places) 137A (9 Places)

FIG. 1

U.S. Patent Aug. 16, 2016 Sheet 2 of 4 US 9,417,909 B2
137
Checkpoint Profile 1
C Expected Expected | Historical | Historical
Server | Application Frequency Duration | Frequency | Duration Other

_210

_212

214 \op16 o218 220

k222

FIG. 2

120A 120B
(/122A (/1228
((
BCH | Network Switch BCH 2 Network Switch
310A A A A A
3 Places)\\ v ¢ v v Y v
A A A B B B
130 | Node 1A Node 1B Node 1C Node 2A Node 213 Node 2C
(6 Places) App 1 App 3 App 5 App 7 App 9 App 11
App 2 App 4 App 6 App 8 App 10 App 12
|
FIG. 3 3108
(3 Places)
120A 129
C/
(
BCH | Network Switch
A
4(1 0A v 4(1 0B 7 4180 v
. ° ° 130C
130A | | Node 1A Node 1B Node 1IC l___>

App 1 App 3 App 5

App 2 App 4 App 6
App 7
130B 412

FIG. 4

U.S. Patent

FIG. 5

Aug. 16, 2016 Sheet 3 of 4

US 9,417,909 B2

%0

Input Checkpointing
Characteristics From A System
Administrator

510

v

Monitor Checkpoint Processes And

Saving Checkpointing Characteristics In

A Checkpoint Profile

| 520

v

Load A Job Depending On The
Checkpointing Characteristics

530

Done

>

Wait For A Job (x) Checkpointing
Message In Log File

610

Y

Start Timer, Reset Network 1/0
Counters For The Job (x)

620

Y

Wait For The Job (x) Checkpoint
Complete Message In Log File

630

y

Stop Timer And Update
Checkpoint Profile Based On The
Time And Counter Values

640

FIG. 6

U.S. Patent

Aug. 16, 2016 Sheet 4 of 4

530

J

Read Job Description And Admin/

US 9,417,909 B2

710

User Provided Initial Checkpoiont —

Profile

Y

Based On Checkpoint Profile,
Choose nodes With Similar Or
Different Checkpoint Profiles As
Needed

v

Check That The Job Will Not

720

730

Over-Commit The Network On +——

The Chosen Nodes

Y

Load Nodes And Start Job When
Appropriate

FIG. 7

740

US 9,417,909 B2

1

SCHEDULING WORK IN A MULTI-NODE
COMPUTER SYSTEM BASED ON
CHECKPOINT CHARACTERISTICS

BACKGROUND

1. Technical Field

The disclosure and claims herein generally relate to multi-
node computer systems, and more specifically relate to sched-
uling work in a multi-node computer system based on check-
point characteristics for an application stored in a checkpoint
profile.

2. Background Art

Supercomputers and other multi-node computer systems
continue to be developed to tackle sophisticated computing
jobs. One type of multi-node computer systems begin devel-
oped is a High Performance Computing (HPC) cluster called
a Beowulf Cluster. A Beowulf Cluster is a scalable perfor-
mance cluster based on commodity hardware, on a private
system network, with open source software (Linux) infra-
structure. The system is scalable to improve performance
proportionally with added machines. The commodity hard-
ware can be any of a number of mass-market, stand-alone
compute nodes as simple as two networked computers each
running Linux and sharing a file system or as complex as 1024
nodes with a high-speed, low-latency network.

A Beowulf cluster is being developed by International
Business Machines Corporation (IBM) for the US Depart-
ment of Energy under the name Roadrunner. Chips originally
designed for video game platforms work in conjunction with
systems based on x86 processors from Advanced Micro
Devices, Inc. (AMD). IBM System x™ 3755 servers based on
AMD Opteron™ technology are deployed in conjunction
with IBM BladeCenter® H systems with Cell Enhanced
Double precision (Cell eDP) technology. Designed specifi-
cally to handle a broad spectrum of scientific and commercial
applications, the Roadrunner supercomputer design includes
new, highly sophisticated software to orchestrate over 13,000
AMD Opteron™ processor cores and over 25,000 Cell eDP
processor cores. The Roadrunner supercomputer will be
capable of a peak performance of over 1.6 petaflops (or 1.6
thousand trillion calculations per second). The Roadrunner
system will employ advanced cooling and power manage-
ment technologies and will occupy only 12,000 square feet of
floor space.

As the size of clusters continues to grow, the mean time
between failures (MTBF) of clusters drop to the point that
runtimes for an application may exceed the MTBF. Thus,
long running jobs may never complete. The solution to this is
to periodically checkpoint application state so that applica-
tions can be re-started and continue execution from known
points. Typical checkpointing involves bringing the system to
a know state, saving that state, then resuming normal opera-
tions. Restart involves loading a previously saved system
state, then resuming normal operations. MTBF also limits
systems scaling. The larger a system is, the longer it takes to
checkpoint. Thus efficient checkpointing is critical to support
larger systems. Otherwise, large systems would spend all of
the time checkpointing.

What is needed are efficient checkpointing methods for
multi node clusters. In a shared node cluster there may be
many applications or jobs running simultaneously on a given
node. Some of these application may want checkpoint sup-
port, others may not. The required frequency of checkpoint-
ing may also vary. Without a way to more efficiently check-
point applications, multi-node computer systems will
continue to sufter from reduced efficiency.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF SUMMARY

An apparatus and method is described for scheduling work
based on checkpointing characteristics stored in a checkpoint
profile for a High Performance Computing (HPC) cluster
such as a Beowulf multi-node computing system. The check-
point profile associated with an application or job includes
information on the expected frequency and duration of a
check point cycle for the application. The information in the
checkpoint profile may be based on a user/administrator input
as well as historical information. The job scheduler will
attempt to group applications (jobs) that have the same check-
point profile, on the same nodes or group of nodes. Addition-
ally, the job scheduler may control when new jobs start based
on when the next checkpoint cycle(s) are expected. The
checkpoint monitor will monitor the checkpoint cycles,
updating the checkpoint profiles of running jobs. The check-
point monitor will also keep track of an overall system check-
point profile to determine the available checkpointing capac-
ity before scheduling jobs on the cluster.

The description and examples herein are directed to a HPC
cluster such as the Roadrunner computer system, but the
claims herein expressly extend to other Beowulf clusters and
other multiple node computer systems such as the Blue Gene
computer system also by IBM.

The foregoing and other features and advantages will be
apparent from the following more particular description, and
as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will be described in conjunction with the
appended drawings, where like designations denote like ele-
ments, and:

FIG. 11is a block diagram of a multi-node computer system
known as Roadrunner with a job scheduler that uses check-
pointing characteristics to determine how to schedule jobs for
execution;

FIG. 2 is a block diagram of a checkpoint profile;

FIG. 3 is a block diagram showing two groups of nodes of
a multi-node computer system known as Roadrunner;

FIG. 4 is a block diagram showing a groups of nodes of a
multi-node computer system known as Roadrunner;

FIG. 5 is a method flow diagram for a loading a job depend-
ing on checkpointing characteristics on a multi-node com-
puter system;

FIG. 6 is a method flow diagram for a checkpoint monitor
to monitor checkpointing on a multi-node computer system;
and

FIG. 7 is a method flow diagram for a job scheduler to
schedule jobs on a multi-node computer system based on the
checkpoint profile for the application.

DETAILED DESCRIPTION

An apparatus and method is described for efficient appli-
cation checkpointing by using checkpointing characteristics
stored in a checkpoint profile to determine how to schedule
jobs for execution on a High Performance Computing (HPC)
cluster such as a Beowulf multi-node computing system. The
checkpoint profile associated with the job includes informa-
tion on the expected frequency and duration of a check point
cycle for the application. The information in the checkpoint
profile may be based on a user/administrator input as well as
historical information. The examples herein will be described
with respect to the Roadrunner parallel computer developed
by International Business Machines Corporation (IBM).

US 9,417,909 B2

3

FIG. 1 shows a block diagram that represents a multi-node
computer system 100 such as the Roadrunner cluster com-
puter system. The Roadrunner computer system 100 consists
of eighteen connected units 110 that communicate through a
top level gigabit (Gbit) Ethernet switch 112. Each of the
connected units 110 includes a substantial amount of equip-
ment housed in 16 computer racks. A single connected unit
(CU) 110 is illustrated in the figures for simplicity. The con-
nected unit includes a service node 114 that communicates
with a disk storage unit 116. The Beowulf cluster is some-
times referred to as a “diskless” cluster because the individual
nodes do not have disk storage. The service node 114 further
communicates over a CU Gbit Ethernet switch 118 to a num-
ber of blade center chassis (BCH) 120A-C.

Each connected unit 110 typically has 60 BCHs. BCH1
120A, BCH2 120B and BCH60 120C are shown in FI1G. 1 for
illustration. Each BCH has three nodes 130. In Roadrunner,
the nodes are sometime referred to as “hybrid nodes™ since
they each have three “blades”. A “blade” is a circuit board
with one or more processors and related circuits such as
processor memory. In Roadrunner, there are Opteron Blades
(model .S21) and Cell eDP Blades (Model QS22). The L.S21
has 2 Dual core Opteron chips, and the QS22 has 2 dual core
Cell eDP chips. A ‘hybrid node’ is composed of 1 LS21 and 2
QS22 blades.

Each BCH 120A-C has a network switch 122A-C that is
connected to the CU Gbit Ethernet switch 118 to allow each
BCH to communicate with any other BCH in the CU 110.
Further, a BCH 120A-C can communicate with a BCH in
another CU (not shown) through the top level switch 112. The
top level switch 112 is also a Gbit Ethernet switch. The top
level switch 112 connects the connected units 110 to a num-
ber of file servers 132. The file servers 132 include a number
of'stored applications 134 and corresponding checkpoint pro-
files 137 as described further below.

Again referring to FIG. 1, the multi-node computer system
100 includes a service node 114 that handles the loading of
the nodes with software and controls the operation of the CU.
The service node 114 includes a checkpoint monitor 124, a
resource manager 126, a scheduler 128 and a user interface
130. The job scheduler 128 in the service node handles allo-
cating and scheduling work and data placement on the com-
pute nodes 130. The job scheduler 128 loads a job from disk
storage 116 or from the file servers 132 for placement on the
compute nodes. The job scheduler 128 uses the contents of the
checkpoint profile 137 to determine when and where to load
the application or job as described herein. The user interface
130 is used by the system administrator to control system
functions such as described further below. The resource man-
ager 126 manages and monitors resources used by the system
including the disk 116, Ethernet switches 118, 112 and the file
servers 132. The checkpoint monitor 124 monitors the check-
pointing process for each application and updates the check-
point profile 137 as described further below. The service node
114 is shown as a part of the connected unit 110. Alterna-
tively, some or all of functions of the service node may be
located in a management unit (not shown) that is at the top
level of the system 100 and is connected to the top level Gbit
Ethernet switch 112.

FIG. 2 illustrates a block diagram that represents an
example of a checkpoint profile 137 (also shown in FIG. 1).
The checkpoint profile 137 contains information related to a
job or application 135 on the file server 132. The checkpoint
profile 137 is created prior to or at the time of the process of
checkpointing. The checkpoint profile may be a single file for
checkpoint information for many jobs or each job may store
a checkpoint profile in a as part of job description associated

20

25

30

35

40

45

4

with the file. The checkpoint profiles could be created by a
system administrator using the user interface 130 or by the
checkpoint monitor 124. The checkpoint profiles 137 in the
illustrated example contain a reference to a server 210, an
application or job name 212, an expected frequency 214, an
expected duration 216, a historical frequency 218, a historical
duration 220, and any other similar data 222. The expected
frequency 214 is the frequency that the application is
expected to require or request checkpointing. This value may
be set by the system administrator when the application is set
up to run on the system. Similarly, the expected duration 216
is the estimated amount of time required to perform check-
pointing of the application. The historical frequency 218
reflects the frequency of checkpointing requested by the
application as determined by the checkpoint monitor 124
(FIG. 1). The historical duration 220 reflects the duration or
time required to checkpoint the application in the past as
determined by the checkpoint monitor 124. The historical
frequency and duration may be stored as an average or other
similar representation to reflect the measured values.

As described herein, the job scheduler 128 schedules jobs
for execution on a HPC based on the checkpoint profile to
increase the performance of the HPC by managing the check-
pointing process. When jobs are checkpointing, the overhead
from checkpointing might affect the performance of other
jobs on the cluster. By synchronizing the checkpointing activ-
ity within a segment of the cluster, the affect on other jobs can
be managed. Similarly, checkpointing can be managed to
prevent too many jobs checkpointing simultaneously, which
could saturate network/IO resources to the point where
checkpoint either fails, or is too slow. The examples below
illustrate some of the possibilities for scheduling work in a
HPC based on application checkpoint characteristics stored
in a checkpoint profile. In a shared node cluster, the job
scheduler will attempt to group applications (jobs) that have
the same or similar checkpoint profile, on the same nodes or
group of nodes. Additionally, the job scheduler may control
when new jobs start based on when the next checkpoint
cycle(s) are expected.

A first example of scheduling work based on application
checkpoint characteristics stored in a checkpoint profile is
illustrated in FIG. 1. In this example, all the nodes 130 are
assigned to the same type of checkpoint profile 137A. This
means that all the nodes 130 in this connected unit 110 will
have applications that have a similar checkpoint profile, in
this case identified as checkpoint profile “A” 137A shown in
each node 130. The checkpoint profiles are considered to be
similar where the frequency and duration parameters are
within a preferred range.

FIG. 3 show a second example of scheduling work based
on application checkpoint characteristics stored in a check-
point profile. FIG. 2 represents a portion of'a connect unit 110
of a HPC 100 as shown in FIG. 1. In this example, all the
nodes 130 in a BCH are assigned to the same type of check-
point profile. In this example, BCH1 122A is assigned to
checkpoint profile “A” 310A and BCH2 122B is assigned to
checkpoint profile “B” 310B. Thus, applications Appl
through App6 have a checkpoint profile of type “A” 310A and
applications App7 through App12 have a checkpoint profile
of type “B” 310B.

FIG. 4 shows another example of scheduling work based
on application checkpoint characteristics stored in a check-
point profile. FIG. 4 represents a portion of'a connect unit 110
ofa HPC 100 as shown in FIG. 1. In this example, each of the
nodes 130 in a BCH are assigned to a different type of check-
point profile. In this example, NodelA 130A is assigned to
checkpoint profile “A” 410A and NodeB 130B is assigned to

US 9,417,909 B2

5

checkpoint profile “B” 410B, and NodeC 130C is assigned to
checkpoint profile “C” 410C. Thus, applications Appl and
App2 have a checkpoint profile of type “A” 410A, applica-
tions App3 and App4 have a checkpoint profile of type “B”
410B, and applications App5 and App6 have a checkpoint
profile of type “C” 410C.

As mentioned above, the job scheduler may control when
new jobs start based on when the next checkpoint cycle(s) are
expected. In FIG. 4, the job scheduler determines when to
place and start new application App7 412 onto a node based
on the status of the checkpoint cycle of the applications
already on the node. In this case, the checkpoint profile of all
applications on Nodel1C would be used to determine when to
place and start App7 412. This may be done to ensure that
checkpointing of the new job would ‘sync up’ with the check-
pointing cycles of the other jobs running in the same node(s).
This way, no nodes already running jobs would be slowed
down by the checkpoint activity.

In another scenario, the scheduler may want to avoid sync-
ing up the checkpoint cycles of jobs running together on a
node or group of nodes. For example, if the jobs running on
the node or group of nodes do not use much network band-
width, more system checkpointing that uses a large amount of
network bandwidth may not affect the performance of those
jobs. In this case, it would be advantageous to make sure the
checkpointing does not ‘sync up’, so that the load on the file
servers and networks is spread out.

The checkpoint monitor with the job scheduler may also
keep track of an overall system checkpoint profile to deter-
mine the available checkpointing capacity before scheduling
jobs on the cluster. If the scheduler determines that the check-
pointing overhead of the system exceeds a configurable
threshold and over-commits the network, new jobs may not
enter the system, or sections of the cluster. To do so may
saturate IO/network resources during checkpoint cycles. The
checkpoint monitor also uses information created during the
checkpoint process. The checkpointing process typically
stores progress messages in a log file. For example, when the
checkpoint process begins and ends. The checkpoint monitor
uses these messages to determine when to begin and end a
timer that will reflect the time used for the checkpoint pro-
cess. Similarly, the checkpoint monitor uses the messages to
determine when to set and reset counters that store the volume
or loading of the network during checkpointing of the job.
The timer and counters are typically done in software but
could also be realized in hardware.

FIG. 5 shows a method 500 for efficient checkpointing that
schedules jobs for execution based on checkpoint character-
istics in a checkpoint profile. The steps in method 500 are
preferably performed by the job scheduler 128 in the service
node 114 (FIG. 1) in conjunction with the checkpoint monitor
124. The method begins by inputting checkpointing charac-
teristics from a system administrator for one or more appli-
cations or jobs to be run on the system (step 510). Next,
monitor checkpoint processes and saving checkpointing
characteristics in a checkpoint profile (step 520). Then load a
job into a node depending on the checkpointing characteris-
tics (step 530). The method is then done.

FIG. 6 shows a method 520 as one possible implementation
of step 520 in method 500 for efficient application check-
pointing. The steps in method 520 are preferably performed
by the checkpoint monitor 124 in the service node 114 (FIG.
1). The method 520 would typically be run as a continuous
loop to monitor the checkpointing process of jobs executing
on the system. The method begins by waiting for a job (x)
checkpointing message in a log file (step 610). In this
example, “x” is a reference variable indicating there may be

40

45

60

6

many jobs executing. Next, start a timer and reset the I/O
counters that monitor the I/O use for job (x) (step 620). Then,
wait for a job (x) checkpoint complete message in the log file
(step 630). Then stop the timer and update the checkpoint
profile for job (x) based on the timer and the counter values
(step 640). The method then repeats.

FIG. 7 shows a method 530 as one possible implementation
of step 530 in Method 500 for efficient application check-
pointing. The steps in method 530 are preferably performed
by the job scheduler 128 in the service node 114 (FIG. 1) in
conjunction with the checkpoint monitor 124 upon receipt of
a job scheduling request. First, the method reads the job
description with the checkpoint profile as set up by the system
administrator or user that provides an initial checkpoint pro-
file (step 710). Next, based on the checkpoint profile choose
nodes with similar or different checkpoint profiles as needed
where the job can be placed in the system (step 720). Then,
check the job will not over-commit the network on any chosen
nodes (step 730), and then load the job into a node depending
on the checkpointing characteristics of the job and the check-
pointing characteristics of the jobs running on the nodes
where the job is to be loaded and start the node when appro-
priate (step 740). The method is then done.

An apparatus and method is described herein to schedule
work on a multi-node computer system such as a HPC based
on application checkpoint characteristics stored in a check-
point profile to increase the efficiency of the cluster. In a
shared node cluster where many applications are running
simultaneously, with different checkpoint requirements, the
scheduler uses the checkpoint profile to optimize overall clus-
ter performance by placing applications with similar check-
point profiles on the same node or group of nodes.

One skilled in the art will appreciate that many variations
are possible within the scope of the claims. Thus, while the
disclosure has been particularly shown and described above,
it will be understood by those skilled in the art that these and
other changes in form and details may be made therein with-
out departing from the spirit and scope of the claims.

The invention claimed is:
1. A multi-node computer system comprising:
a plurality of compute nodes that each comprises a proces-
sor and memory;
a network connecting the plurality of compute nodes;
a checkpoint monitor that monitors a plurality of jobs
executing on the computer system during checkpointing
and stores checkpoint characteristics for each job in a
plurality of checkpoint profiles; and
a job scheduler that determines when and where to load a
new job into the plurality of compute nodes depending
on the checkpoint characteristics in the plurality of
checkpoint profiles, wherein the job scheduler loads the
new job into one or more compute nodes that has one or
more jobs executing with similar checkpoint character-
istics as the checkpoint characteristics for the new job.
2. The multi-node computer system of claim 1 wherein the
one or more compute nodes is chosen from the following: the
nodes in a connected unit, the nodes connected to the same
network switch, and a single node.
3. A multi-node computer system comprising:
a plurality of compute nodes that each comprises a proces-
sor and memory;
a network connecting the plurality of compute nodes;
a checkpoint monitor that monitors a plurality of jobs
executing on the computer system during checkpointing
and stores checkpoint characteristics for each job in a
plurality of checkpoint profiles; and

US 9,417,909 B2

7

a job scheduler that determines when and where to load a
new job into the plurality of compute nodes depending
on the checkpoint characteristics in the plurality of
checkpoint profiles, wherein the job scheduler loads the
new job based on the checkpoint characteristics for the
job and starts the new job at a time depending on when
the next checkpoint cycle for other jobs on the group of
nodes is expected.

4. A computer implemented method for scheduling work in

a high performance, multi-node computer system with a plu-
rality of nodes based on checkpoint characteristics, the
method comprising the steps of:

monitoring checkpointing of a plurality of jobs and saving
checkpointing characteristics in a plurality of check-
point profiles for the plurality of jobs; and

determining when and where to load a new job on the
plurality of nodes in the computer system depending on
the checkpoint characteristics in the plurality of check-
point profiles; and

loading the job onto a node, wherein the step of loading the
new job includes loading the new job into one or more
compute nodes that have similar checkpoint character-
istics as the new job.

5. A computer implemented method for scheduling work in

a high performance, multi-node computer system with a plu-
rality of nodes based on checkpoint characteristics, the
method comprising the steps of:

monitoring checkpointing of a plurality of jobs and saving
checkpointing characteristics in a plurality of check-
point profiles for the plurality of jobs; and

determining when and where to load a new job on the
plurality of nodes in the computer system depending on
the checkpoint characteristics in the plurality of check-
point profiles; and

loading the job onto a node, wherein the step of loading the
new job includes loading the new job into one or more
compute nodes that have different checkpoint character-
istics as the new job.

6. A computer implemented method for scheduling work in

a high performance cluster computer system based on check-
point characteristics, the method comprising the steps of:
inputting expected checkpoint characteristics for a new job
from a system administrator including an expected fre-
quency of checkpointing, an expected duration of check-
pointing;

10

20

25

30

35

40

8

monitoring checkpointing of a plurality of jobs and saving
checkpointing characteristics in a plurality of check-
point profiles which include a historical frequency of
checkpointing, and a historical duration of checkpoint-
mg;

reading a checkpoint profile for the new job;

choosing at least one node depending on the checkpoint
profile of the new job and the checkpoint profiles of the
plurality of jobs to group jobs that have a similar check-
point profile;

checking that the new job does not over commit the net-
work to the chosen at least one nodes;

loading the chosen nodes with the new job;

starting the new job.

7. A non-transitory computer-readable storage medium
with an executable program thereon, wherein the program
instructs a processor to provide:

a checkpoint monitor that monitors a plurality of jobs on a
multi-node computer system with a plurality of nodes
during checkpointing and stores checkpoint character-
istics for the plurality of jobs in a plurality of checkpoint
profiles;

a job scheduler that determines when and where to load a
new job into a node of the plurality of compute nodes
depending on the checkpoint characteristics in the plu-
rality of checkpoint profiles, wherein the job scheduler
loads the new job based on the checkpoint characteris-
tics for the job into one or more compute nodes that have
jobs with similar checkpoint characteristics.

8. A non-transitory computer-readable storage medium
with an executable program thereon, wherein the program
instructs a processor to provide:

a checkpoint monitor that monitors a plurality of jobs on a
multi-node computer system with a plurality of nodes
during checkpointing and stores checkpoint character-
istics for the plurality of jobs in a plurality of checkpoint
profiles;

ajob scheduler that determines when and where to load a new
job into a node of the plurality of compute nodes depending
on the checkpoint characteristics in the plurality of check-
point profiles, wherein the job scheduler loads the new job
based on the checkpoint characteristics for the job and starts
the new job at a time depending on when the next checkpoint
cycle for other jobs on the group of nodes is expected.

#* #* #* #* #*

